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Cne of the main hinderances in fluorescence spectrometry is the

scattering of excitation source radiation (1-4). For condensed-phase

samples, not all of the light passes through a solution or is

abscrbed; some is scattered by finely dispersed particles, part is

reflected from the cuvette surfaces (if not coated with an

anti-reflection coating), and a fraction is Rayleigh scattered from

the solvent (5). The effect of scattering is to deflect a portion of

the exciting radiation into the fluorescence detection optical path,

causing erroneously high measured intensities. Generally, scattered

radiation is not directly detected in molecular fluorimetry because of

a wavelength shift of the fluorescence from the absorption region;

spectral discrimination is therefore possible. However, in

low-resolution dispersing systems such as those employing filters,

scattering can be detected directly. Moreover, even in higher quality

systems, scattering contributes to stray light which can limit

sensitivity, precision, and accuracy in molecular fluorimetry.

Scattering is potentially an even more serious problem in atomic

fluorescence spectrometry (AFS) because resonance transitions are

commonly employed. In AFS, scattering arises from refractive index

inhomogeneities in the flame (Rayleigh scattering) and from

incompletely atomized particles (Mie scattering); the greatest

contribution is from Mie scattering (3,6). In fact, Mie scattering,

which is the principal noise source in many atomic fluorescence

measurements, limits accuracy, detection limits, and precision.

Correction for or elimination of scattering is essential if atomic

fluorescence spectrometry is to be used as a practical analytical



technique (7-11).

Several methods have been proposed for reducing the deleterious

effects of scattering in AFS. Among these methods are:

a) use of non-resonance transitions - similar to molecular

fluorimetry in that the fluorescence radiation is

wavelength shifted from that of the incident radiation,

and can be spectrally isolated. However., non-resonance

transitions are less probable than resonance ones, and

are not commonly employed in routine analysis (12,13),

b) polarization discrimination - unlike fluorescence,

Rayleigh scattering exhibits a dependence on polarization

and on direction of observation of the scattered light.

By using linearly polarized light for excitation and by

placing the detector at a right angle to the direction of

the exciting light in the same plane as the polarization,

one can minimize scatter while maintaining the

fluorescence signal. Ho wever, this approach is effective

only fcr reduction of Rayleigh scattering and is

generally not applicable to flame atomic fluorescence

where Mie scattering can be dominant (14),

c) wavelength modulation - scattering intensity is

essentiall~y constant over small changes in excitation

wavelength, whereas atomic fluorescence is highly

sensitive to wavelength shifts. Electro-optically tuned

cw dye lasers can provide 1 nm repetitive wavelength

scans at I'Hz modulation frequencies (14,16). Wavelength

modulation and gated detection also preserve the



advantage cf amplitude modulation in that background

emission from the flame is minimized,

d) time-resolution - involves a pulsed excitation source and

gated detection system. scattering Is essentially

instantaneous and is therefore of the same duration as

the excitation pulse, whereas fluorescence exhibits a

finite lifetime. Therefore, the detection of scattered

radiation can be greatly reduced if one measures

fluorescence only after a finite time beyond excitation;

i.e., after the excitation pulse is finished but before

complete decay of the fluorescence radiation (17).

In the present work, this last method is explored. A variable,

fixed-time delay spectrofluorimeter has been designed which is capable

of eliminating most of the scattered radiation problem. Scatter is

reduced by observing fluorescence a finite time after a light pulse

excites the sample. This time-dependent observation is accomplished by

means of a unique opto-electronic signal gating scheme constructed to

perform the cross-correlation between two photodetector response

functions (18-21). This arrangement is well suited for such studies

because of the extremely narrow pulses provided by a synchronously

pumped dye laser. In *ddition, an optical delay line is incorporated

into the instrument and can be accurate.'. positioned to measure

fluorescence at any selected time after excitation, yet is free from

triggering instability and drift.

Experimental

The experimental arrangerent includes a synchronously pumped dye
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laser and opto-electronic cross-correlation system described

previously (18,21). Briefly, the pulses (6 pa FWHM) from a

synchronously pumped dye laser (Model 171-06 Argon ion laser; Model

342 mode-locker with Model 452 mode-locker driver; Model 375 dye laser

and Model 341 Synchronously Pumping Accessory Package,

Spectra-Physics, Mountain View, CA) simultaneously irradiate a fast

photodiode (Model 403B, Spectra-Physics) and sample cell (flame or

cuvette) containing the fluorophore of interest. The fluorescence is

detected by a fast response photomultiplier tube (Model 31024, RCA,

Lancaster, PA), whose output is connected to one input of a

double-balanced microwave mixer (Model ZFM-4, Mini-Circuits, New York,

NY). The second input to the mixer receives the pulse from the fast

photodiode, and the mixer performs a multiplication between the two

signals. Because the photodiode signal is zero except when the laser

strikes it, the signal serves as a "gate function" when it multiplies

(in the mixer) the photomultiplier (PMT) output. Therefore, the

photomultiplier output is sampled only during the time corresponding

to the arrival of the laser pulse at the photodiode. Conveniently, the

relative arrival time of the pulses at the two detectors (photodiode

and photomultiplier) is easily varied by means of an optical delay

line. Time-resolution of this delay line is 3 ps and its range of

adjustment is approximately 12 ns. The delay is positioned so that the

sample cell receives the laser pulse earlier than the photodiode. The

tire difference is chosen to be greater than the response time of the

PMT under scattering conditions, but less than the lifetime of the

fluorophore to be studied. When no fluorophore is present, the output

of the mixer is approximately zero. However, when a fluorophore is
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placed in the sample cell, the pulse width from the PMT is increased

because of the finite lifetime of the fluorophore. Measurements of

fluorescence intensity are therefore obtained in the absence of

scattered radiation.

The actual procedure involves measuring the instrument response

function (by directing scattered light toward the photomultiplier) and

fluorescence decay curves (Figure 1) and determining from them the

optimal position of the delay line. Specifically, the ratio of

fluorescence intensity (S) to scatter intensity (B) was calculated as

a function of optical delay setting. The delay time at which S/B is

greatest is used to perform the scattering elimination experiments.

Ideally, the fixed position of the delay line is such that sampling by

the photodiode gate occurs in a temporal region where only

fluorescence and no scattering exists (cf., Figure 1).

The influence of scatter was reduced in both atomic and molecular

fluorescence measurements. Molecular fluorophores examined were

Rhodamine B ( r= 2.79 ns) and Rose Bengal ( r= 0.70 ns), each of which

was prepared at a concentration of 1 PM (in EtOH) with a fixed amount

of polystyrene scattering spheres (0.22 ± 0.006 lim diameter, Dow

Chemical Co., Indianapolis, In) added to the solution. Polystyrene

sphere concentrations ranged from 0 to 40 u g/ml (6 solutions). Care

was exercised in all measurements to ensure that the detected signal

(fluorescence plus scatter) was within the linear range of the PMT

response. Laser power was adjusted using a vsriable neutral-density

filter to give the maximum permissible signal (below PMT saturation)

when the fluorophore sample contained the highest concentretion of

scattering spheres.

1,
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In the measurement of atomic fluorescence, sodium (T = 0.72 ns)

at a concentration of 10 pg/ml (as NaCl solution) was mixed with four

concentrations of AlCl ,: 100, 500, 1000, and 5000 ppm. Each solution

was aspirated into a stoichiometric (F/C = 0.13) air-acetylene flame

using a gas-dispersion-tube nebulizer. In this flame, Al is not

significantly atomized, but is converted largely to desolvated

particles which generate strong Mie scattering.

Results and Discussion

The relationship between time delay and the ratio of fluorescence

(S) to scatter (B) is shown in Figure 2. The measured S/B ratio at

zero-time delay is normalized to one; all measurements at successive

time delays are related to this value. For the Rhodamine B soluticn

with its relatively long lifetime (2.79 ns), a greater than six-fold

increase in S/ is measured. However, for the shorter lifetime

fluorophores Rose Bengal (0.70 ns) and Na (0.72 ns), the increase in

SIB is not as great, but is still significant. Any such increase in

S/B is valuable in that detection limits can be lowered and the

precision of fluorescence measurements increased (2).

From the curves in Figure 2, one can determine the optimum (best

S/B) position of the optical delay line for the elimination of

scatter. For Rhodamine B, a delay of 3 ns was chosen, whereas a 1.6 ns

delay was employed for both Rose Bengal and Na measurements.

The degree to which scatter can be eliminated through

time-resolution is revealed in Figure 3, where the total measured

signal (ostensibly from fluorescence alone) is plotted versus the

concentration of scattering spheres. In conventional steady-state

m m m
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fluorimetry, the presence of' a scattering substance in the fluorophore

solution would cause erroneously high intensity levels (Figure 3A).

Cf course, with a high-resolution spectrometer, little scattering

would be detected directly and curve A would exhibit a lower slope.

However, in the present measurement system, a broad-band (10 nm)

interference filter was employed to effect the worst case.

The strong scatter/stray light signal in curve A is greatly

reduced by measuring the fluorescence intensity at a finite delay

after excitation (Figure 3, B and C). As expected (cf., Fig. 2), the

longer this delay time, the better the rejection of the scattering

interference. The slight decrease in measured signal with scatterer

concentration (cf., Fig. 3C) can be attributed to a reduction in

source intensity in the observed sample volume caused by

scattering-induced losses. This effect is similar to the inner-filter

behavior (13) common in molecular fluorimetry. Specifically, as the

concentration of scattering spheres is increased, the intensity of the

exciting laser beam is attenuated by scattering losses as it traverses

the sample cell. Concurrently, the fluorescence itself is scattered

during its passage from the laser-beam location in the cell toward the

detection system. For the relatively short lifetime of excited state

Rose Eengal in solution, the measured increase in relative

fluorescence intensity results from an offset of this inner-filter

effect by a relatively high scatter/stray signal. For this solution,

the optical delay time (cf., Fig. 2) is so close to the scatter

(instrument) response curve that a significant amount of scatter can

still be detected. A longer delay time could be employed if further

scattering reduction is necessary; however, a significant loss of



10

fluorescence signal would result. It is expected that Figure 3B would

exhibit an even greater slope (more closely follow the zero-time delay

scatter - Fig. 3A) if inner-filter effects were absent.

Freedom from the effects of scattered radiation in Na atomic

fluorescence is displayed in curve B of Figure 4i, where a 1.6 ns time

delay was employed between excitation and detection. In this

experiment, added AM 3 increased the density of scattering sites in

the flame, as seen in curve A. However, the use of time-delayed

detection (curve B) eliminates most of the scattering error. There are

at least three possible competing processes that affect the measured

fluorescence signal in Figure 3: inner-filter effects from scattering

by incompletely atomized Al particles; occlusion of the Na by Al in

solution, and detected scattered/stray light intensity. However,

occlusion was found to be negligible in a separate experiment; equal

emission intensity was measured for Na with 0 and 5000 ppm Al in

solution. Similar to the Rose Bengal case (cf., Fig. 3), detection of

scatter/stray light is expected at the 1.6 na delay because the

fluorescence decay overlaps the background (scatter) pulse.
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Figure Captions

Figure 1. Diagram showing ideal position of sampling gate (A) with

respect to the fluorescence response (B) and impulse

response (C) curves.

Figure 2. Signal-to-background enhancement with time-delay sampling.

0 Rhodamine B, T= 2.79 rs; 0 Rose Bengal, T= 0.70 ns; and +

Na, T= 0.72 ns.

Figure 3. Reduction of scatter by time resolution. A, Rhodamine B (T=

2.79 ns), delay line at 0.0 ns (conventional); B, Rose

Bengal (T= 0.70 ns), delay line at 1.6 ns; and C, Rhodamine

(T= 2.79 ns), delay line at 3.0 ns.

Figure 4. Reduction of scattered radiation for Na atomic fluorescence

in an air-acetylene flame. A, conventional sampling, no

time delay after excitation; and B, sampling 1.6 ns after

excitation.
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